A perturbed elementary operator and range-kernel orthogonality
نویسندگان
چکیده
منابع مشابه
Putnam-fuglede Theorem and the Range-kernel Orthogonality of Derivations
Let (H) denote the algebra of operators on a Hilbert space H into itself. Let d= δ or , where δAB : (H)→ (H) is the generalized derivation δAB(S)=AS−SB and AB : (H) → (H) is the elementary operator AB(S) = ASB−S. Given A,B,S ∈ (H), we say that the pair (A,B) has the property PF(d(S)) if dAB(S) = 0 implies dA∗B∗(S) = 0. This paper characterizes operators A,B, and S for which the pair (A,B) has p...
متن کاملThe Perturbed Maxwell Operator as Pseudodifferential Operator
As a first step to deriving effective dynamics and ray optics, we prove that the perturbed periodic Maxwell operator in d = 3 can be seen as a pseudodifferential operator. This necessitates a better understanding of the periodic Maxwell operator M0. In particular, we characterize the behavior of M0 and the physical initial states at small crystal momenta k and small frequencies. Among other thi...
متن کاملNumerical Range and Orthogonality in Normed Spaces
Introducing the concept of the normalized duality mapping on normed linear space and normed algebra, we extend the usual definitions of the numerical range from one operator to two operators. In this note we study the convexity of these types of numerical ranges in normed algebras and linear spaces. We establish some Birkhoff-James orthogonality results in terms of the algebra numerical range V...
متن کاملLinear Orthogonality Preservers of Standard Operator Algebras
In 2003, Araujo and Jarosz showed that every bijective linear map θ : A → B between unital standard operator algebras preserving zero products in two ways is a scalar multiple of an inner automorphism. Later in 2007, Zhao and Hou showed that similar results hold if both A,B are unital standard algebras on Hilbert spaces and θ preserves range or domain orthogonality. In particular, such maps are...
متن کاملNear-Orthogonality Regularization in Kernel Methods
Kernel methods perform nonlinear learning in high-dimensional reproducing kernel Hilbert spaces (RKHSs). Even though their large model-capacity leads to high representational power, it also incurs substantial risk of overfitting. To alleviate this problem, we propose a new regularization approach, nearorthogonality regularization, which encourages the RKHS functions to be close to being orthogo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2005
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-05-08337-1